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Abstract-‘This paper concerns a numerical study of the flow characteristics of thermocapillary convection 
in a system composed of two immiscible liquid layers subject to a temperature gradient along their interface. 
We consider the two-layer system : B203 (encapsulant) and GaAs (melt), for its experimental relevance in 
crystal growth by the directional solidification method. Two cases have been studied : a system with only 
one liquid interface (melt/encapsulant) and a system where the outer surface of encapsulant is open to air 
(and so, subject to a second thermocapillary force). Both the liquid-liquid interface and the outer surface 
are assumed to be undeformable and flat, which is a valid assumption according to earlier theoretical and 
experimental results. A 2-D numerical ‘simulation of convection is carried out in a rectangular cavity by 
solving the system of Navier-Stokes equations using a fmite difference method with a staggered grid for 
the pressure. Having in perspective a Spacelab experimentation we disregarded gravity Cg = 0). We show 
that a stro-ng damping of the melt flow can be obtained by using an encapsulant liquid layer having 
appropriate viscosity, heat conductivity and/or thickness. 0 1998 Elsevier Science Ltd. All rights reserved. 

II. INTRODUCTION 

The study of convective flows and heat transfers in a 
system of immiscible liquid layers has a great poten- 
tial, due to numerous engineering applications, par- 
ticularly for the liquid encapsulation technique of 
crystal growth by directional solidification. Encap- 
sulation of an electronic melt is used to control melt 
stoichiometry when the melt contains a volatile com- 
ponent such as ge-rmanium, GaAs, etc. (see, for exam- 
ple, Metz et al. [ l:l). In addition, encapsulation can be 
useful for a better control of heat transfer as shown 
by Johnson [2]. It has also the advantage of reducing 
(or even eliminating) convective flow in the melt hence 
drastically reducing unwanted inhomogeneities in sol- 
idifying materials. The liquid encapsulated floating 
zone technique for space processing of high-purity 
semiconductors has been proposed by Barocela and 
Jalilevand [3]. In a microgravity environment, aboard 
a spacecraft, thermocapillary flows (induced by the 
Marangoni effect, i.e. by a surface stress due to the 
variation of surface tension with temperature along 
an interface) is of major importance as buoyancy is 

7 Present address : National Microgravity Laboratory, 
Institute of Mechanics, CAS, Beijing 100080, China. 
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greatly reduced. To study the role of the liquid encap- 
sulant on the possible damping of the melt flow, we 
consider a differentially heated system of two immis- 
cible liquid layers open to air, hence a system with 
a liquid-liquid interface and a free top surface. We 
provide detailed numerical predictions of ther- 
mocapillary convection in such a two-layer system, 
with particular attention on the metallic melt GaAs, 
a low Prandtl number fluid covered by a layer of a 
highly viscous fluid (B,O,) which is the encapsulant 
liquid open to air. Although this configuration does 
not strictly correspond to the set-ups used by crystal 
growers, it captures, however, the essence of the prob- 
lem and it allows us to obtain relevant information 
about the expected role of the encapsulant liquid. 

Thermocapillary convection and heat transport 
phenomena in a two-layer system is complex due to 
the hydrodynamic and thermal interactions between 
fluids in the two contiguous layers and to Marangoni 
effect acting on both the liquid-liquid interface and 
the free top surface. In the crystal growth method 
with liquid-encapsulated floating-zones, the thermal 
gradient has two components: parallel and per- 
pendicular to the liquid-liquid interface hence the 
possibility of ‘thermocapillary convection’ and ‘con- 
vective instability’, respectively. Here we study only 
the former case. 
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NOMENCLATURE 

A aspect ratio (of the lower layer), L/H, Greek symbols 
g acceleration of gravity Y surface tension coefficient, -aa/13T 

Hi height of ith layer 0 dimensionless temperature 
H total height of cavity (H, + H,) thermal diffusivity 
L length of cavity ; thermal conductivity 
Ma Marangoni number, p dynamic viscosity 

YZ- I ATH:Ihw&) V kinematic viscosity 
P dimensionless pressure P density 
Pr Prandtl number, v&c2 0 surface tension 
T, constant temperature at cold wall u* surface-tension coefficient ratio of free 
Th constant temperature at hot wall surface to interface, Y~_~~JY~_, 
AT maximum temperature difference ti dimensionless streamfunction. 

(Th - Tc) 
u, a dimensionless velocity components Superscripts 
u, dimensionless horizontal velocity at * relative quantities (layer 1 to layer 2) 

interface air ambient condition (air). 
x, y dimensionless Cartesian coordinates. i ith fluid layer (i = 1,2) 

Earth-based experimental results exist about ther- low Grashof and Marangoni numbers (Gr < 1 and 
mocapillary convection in a two layer system. For 
instance, Villers and Platten [4, 51, investigated ther- 
mocapillary and buoyancy-driven convection for a 
system of heptanol over water (Pr z 7) in a cavity, 
hence, no open surface to air. They measured the 
longitudinal (horizontal) velocity profiles in each 
layer and the interfacial tension profiles as a function 
of temperature along the interface. The convective 
flows have been also observed for different values of 
the two-layer thickness ratio. Also for a two-layer 
system in a cavity, Koster et al. [6] obtained exper- 
imental results including flow visualisation for the 
FC70-SilOcS and FC70-SiSOcS systems. Similar exper- 
iments were performed by Aznma et al. [7] but in a 
much shallower cavity open to air (A = H/L > 20) 
hence reducing the influence of buoyancy. They 
observed a multi-cellular flow structure in the upper 
layer, where evaporation occurred at the top surface. 

There also exist theoretical studies dealing with an 
asymptotic (1-D) problem for a two layer system, 
which can only provide understanding of convection 
far from the boundaries of the cavity. For instance, 
Villers and Platten [4], Napolitano et al. [8] and Wang 
et al. [9] studied thermocapillary and buoyancy-driven 
convection. Shevtsova et al. [lo] and Liu et al. [1 l] 
have studied the same geometry but with an open 
surface. All reports provided horizontal velocity and 
temperature profiles in a vertical cross-section of the 
cavity. Particular cases, with appropriate choice of 
parameters permitted studying conditions to reduce 
convection in the encapsulated layer or along the 
interface. Doi and Koster [12] restricted consideration 
to pure thermocapillary convection with a free top 
surface. Most of the theoretical analyses assume rec- 
tangular cavities of infinite aspect ratio (A + co), for 

Mu Q 1). 
A 2-D numerical investigation of combined ther- 

mocapillary and buoyancy-driven convection in two- 
layer systems of finite aspect ratio (A < co) heated 
from the side has been done by Liu et af. [I I] and 
Liu [ 131, and Doi and Koster [ 121. Their findings 
confirmed previous theoretical results for infinite 
aspect ratio layers that indeed the convection in the 
encapsulated layer (representing the melt) can be sig- 
nificantly reduced by a suitable choice of encapsulant 
liquid. Numerical studies in a rectangular cavity can 
be found also in refs. [ 14, 151. In these papers the finite 
element code FIDAP was used. It was shown that 
a microgravity environment significantly reduces the 
flow in the system of water over fluorinet FC75 with 
a free top surface. It was also found that the defor- 
mation of both interfaces is negligible even for large 
Marangoni numbers, relative to fluid depth (smaller 
than l/2000 for 1 g, and l/180 for lo-‘g, respectively). 

A numerical study of combined thermocapillary 
and buoyancy-driven convection in a vertical two- 
layer cavity with a deformable liquid-liquid interface 
has been performed by Li et al. [16]. Their results 
show a strong reduction of the melt flow (GaAs) when 
the encapsulant is highly viscous (Bz09 ; the maximum 
flow velocity at the interface being reduced by a factor 
of 1000). Finally, let us mention the 2-D numerical 
study of Doi and Koster [12], to estimate the endwall 
effect in the case of a system of melt (Pr = 0.01) and 
encapsulant (Pr = 1) of equal depths. 

The present paper is a continuation of an earlier 
work presented in the same journal (see Liu et al. 
Ill]), but now attention is focused on a two-layer 
system corresponding to a metallic melt (GaAs) 
encapsulated by a highly viscous fluid (B,O,). This 
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Fig. 1. Geometry and coordinate system of the problem. 

system is containeld in a rectangular cavity, laterally 
heated (see Fig. 1). We consider two cases for the 
outer surface of encapsulant, which is either confined 
by a rigid surface (quartz, for example) or not ; in the 
later case, we account for a second thermocapillary 
effect able to counteract the one at the melt-encap- 
sulant interface. For simplicity and due to the neg- 
ligible value of the interface deformation, according 
to Sen and Davis [17] results, we consider both the 
liquid-liquid interface and open surface as undeform- 
able. Before embarking in the study of the B,O,-GaAs 
system, we elucidate the specific influence on the 
thermocapillary flow played by the various par- 
ameters of the problem. In Section 3 we consider a 
rigid cavity (not open surface) with fluids of equal 
transport properties (Section 3.1), then with liquids of 
different transport properties, i.e. different viscosities 
(Section 3.2) and/or diffusivities (Section 3.3). Section 
4 deals with the B,O,-GaAs system, which is a case 
of experimental relevance to crystal growth. In Section 
4.1 we consider a rigid cavity, while in Section 4.2 the 
surface of the encapsulant (B203) is taken open to air, 
and, finally, in Section 4.3 we consider an encapsulant 
with unrealistically low viscosity in order to sort up 
in a finite geometry the effects of viscosity in the bulk 
due to the no-slip ‘condition at the boundaries. 

2. STATEMEiNT OF THE PROBLEM AND 
NUMERICAL METHOD 

Let us consider a system of two immiscible and 
incompressible viscous fluids, liquid-l (upper) and 
liquid-2 (lower), in a two-dimensional cavity of length 
L and height H as shown in Fig. 1. The thickness of 
the upper layer is HI, and that of the lower layer is 
Z& ; the total thickness is denoted H. The thickness 
ratio is h* = H,/H,, and the lower-layer aspect ratio 
is A = L/H,. The dynamic and kinematic viscosities, 
the density, the th’ermal conductivity and the thermal 
diffusivity of liquid-i are denoted pi, v,, p,, 1, and K~, 

respectively (i = 1,2). The rectangular cavity has a 
rigid bottom, a flat liquid-liquid interface and two 
types of boundary conditions for the top surface : (1) 
rigid plate (case A below) ; and (2) free surface subject 
to thermocapillary effect (case B). The vertical side- 
walls of the cavity are maintained at constant tem- 

peratures T, and T,,, where T, < T,, ; this yields an 
external temperature gradient parallel to the liquid- 
liquid interface. We assume that the horizontal walls 
are poorly conducting plates, and that the free top 
surface (for case B) is undeformable. For simplicity, 
no external force is considered (in particular, g = 0). 
The surface tension is assumed to vary linearly with 
temperature. At the interface between the two liquids 
we have : 

02-l = Q2--1, -~2-1(7’2-T0) (1) 

withT,,=(T,+TJ/2andy,_, = -&,_,/aT,whichis 
the temperature coefficient of interfacial tension. The 
subscript 0 denotes a reference state. In case B, it 
exists as a second surface-tension effect on the free top 
surface. 

a1 -air = 01 --air, -r,-aAT, -To) (2) 

where Y,-~~ = - tk~_~,/aT is the temperature 
coefficient of surface tension between liquid-l and air. 

The problem is rendered dimensionless by using 
H:/K~, K~/H~, Hz, ATH,/L as new scales for, respec- 
tively, time, velocity, length and temperature, where 
AT = Th-- T,. The scaling factor for pressure is 
~:pz/H:. 

The Navier-Stokes and energy equations have to 
be satisfied in each liquid layer of the system. Then, 
the flow is governed by the following dimensionless 
equations written in the form of primitive dependent 
variables as 

aui avi o 
ax+&= 

au, at+Ui$+vi$= _zpi!e+z*i[?k+E3] 

(4) 

avi dl+Ui~+vi~= _,~_+zDi[c3+$] 

(3 

aei ,+u,~+v,$= TDf$+3] (6) 

where f$ =(Ti-T,)L/ATH, (i = 1,2) is the dimen- 
sionless temperature. The ‘constants’ in the right hand 
side of these dimensionless equations (3)-(6) which 
depend on the choice of scaling quantities, are : 

ZP, =$; ZD, = Prv*; TD, = K*, 

ZP, = 1; ZD, = Pr; TD2 = 1. 

The dimensionless coefficients in equations (3)-(6) 
contain the Prandtl number of the melt, 

Pr = V2/K2 (7) 
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and the ratios of physical properties of liquid-l to priate boundary conditions equations (8)-( 13), is 
liquid-2 : solved by a finite difference method using an A.D.I. 

p* = pI/pz, V* = VI/V2 and K* = K,/K2. 
formulation to obtain a steady solution (see [I 31). The 
convergence criterion for the Navier-Stokes equa- 

At the solid walls (including the top wall, in case tions is based on the maximum relative variation of 
A), we take a no-slip boundary condition. At the variables (less than 0.01%). Most of the solutions 
cold and hot sidewalls, the temperature is differentially reported below have been obtained on regular uni- 
prescribed, and the bottom and the top rigid walls form meshes (from 3 1 to 201 nodes in the x-direction 
(for case A) are thermally poor conductors. At the and from 21 to 35 nodes in they-direction, for different 
flat interface, an the flat top surface in case B, the aspect ratios, 1 < A < 12). All computations were 
boundary conditions demand continuity of velocity carried out in double precision on Intel-iPSC/860 
and temperature, shear stress balance and heat flux computer. For the sake of completeness and to test 
balance. These boundary conditions are : the accuracy and convergence of our computer pro- 

1. at the two vertical walls (x = 0 and x = A), 
gram we have performed calculations with non-van- 
ishing gravity (see Table 1). For instance, for A = 2, 

u,=u,=O, 0,=0 (atx=O), B,=A (atx=A) Gr = 104, h* = p* = Pr = 1, L* = 0.5, K* = 0.625 
and /I* = 2, our results using 5 1 x (25 + 25) meshes 

(8) agree quite satisfactorily with the results reported by 

2. at the rigid bottom (y = - l), Shevtsova et al. [ 181, who used a non-uniform regular 
mesh with 50 x 50 nodes for the spatial discretization. 

u2 = up = 0, 
ah 
- = 0 ay 3. THERMOCAPILIARY CONVECTION FOR 

3. at the interface between layer-l and layer-2 MODEL OF TWO-LAYER SYSTEMS OF 

(Y = O), EQUAL DEPTH (CASE A) 

u, =uz, v, =v2 =o, au2 __,*au,= -Ma2 The physical properties of liquid layers used in crys- 

ay ay tal growth experiments are often very different. These 

~,ae,=ae, 
differences are expected to differently affect the vel- 

8, = 92, ocity and temperature fields in each layer, even when 
ay ay the two layers have equal depth with symmetrical 

where 
boundary conditions (both no-slip). Thus, let us see 
the role played by transport ratios. In this section the 

Ma = Y~-~ATH%K,L), (11) cavity has no open, free surface. 

is the Marangoni number corresponding to the 
melt layer, 1* is the ratio of thermal conductivites, 

3.1. ‘Symmetrical’system (p* = K* = 1) 

R* = R,/&. 
From the analytical expressions of velocity profiles 

4. at the top surface (y = h*, with h* = HI/H,), two 
in an infinite aspect ratio cavity (A -+ co) with g # 0 

cases are considered, 
(see Liu et al. [ll]), we can derive an asymptotic 
solution of the dimensionless streamfunction of the 

??for a rigid top surface (case A) : system, for zero gravity (g = 0). We have : 

??for an open free top surface (case B) : 

v, = 0, ,*!k = -o*&faae, 
ay ax ’ 

2 + Bi(& -t&J = 0, 

(0 < y < h*) (15) 

*z = - $$$)(Yj - 2Y2 ‘CY) + G 
a 

(-1 <y<O) (16) 

where Bi is a Biot number and f?air the ambient dimen- 
where C, and C, are integration constants for the 

sionless temperature (for simplicity here we take 
upper and lower layers, respectively, Q, = p*/h*, and 
Cr represents the dimensionless value of the hori- 

Bi = 0) ; zontal temperature gradient (a&/ax). We take C, = 1, 

~*=(-aa,_,,,ja~)i(-a~z_,/a~ (14) 
as the temperature field is assumed to linearly vary in 
x-direction for any y. As the streamfunction vanishes 

is the ratio of surface-tension temperature coefficients. at rigid walls and at the interface, the values of the 
The Marangoni number corresponding to the encap- streamfunction can be obtained everywhere. In par- 
sulant layer is Ma’ = kfa(h*n*/p*Ic*). ticular, we consider the absolute value of the stre- 

The system of eauations f3t(6). with the annro- .., \,< II amfunction extremum in each layer, which represents 
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Table 1. Numerical results obtained for a two-layer system in both cases A and B at A = 2, h* = p* = Pr = 1, A* = 0.5, 
K* = 0.625, B* = 2 (thermal expansion ratio) and Gr = lo4 (Grashof number), Re = lo3 (Reynolds number) (in case B), in 

comparison with those reported by Shevtsova et al. (1991) 

Calculus case Parameter Y I,rnaX 
Present results (Shevtsova’s) 

~,,miLl Y z,mai Y 2,mm 

Case A Re = 0 1.804 (1.82) 0 (0) 1.280 (1.34) -0.352 (?) 
Case A Re = 10’ 0.764 (0.78) -1.041 (-1.08) 2.792 (2.87) 0 (0) 
Case A Re = 10“ 0.132 (?) - 12.92 (- 12.79) 13.0 (12.90) 0 (0) 

Case B u* = 0 1.420 (1.40) - 0.970 (-0.99) 2.760 (2.84) 0 (0) 
Case B CT* = 1 3.140 (3.16) - 0.820 (?) 2.720 (2.8) 0 (0) 
Case B CT* = 10 18.36 (19.0) -0.728 (?) 2.410 (2.5) -0.156 (?) 

the mass flow rate. For Ma > 0, it is equal to I$,,mi,.,l 
in the encapsulant layer and to $2,max in the melt layer, 
where : 

*I ,min = - gfy;) h* 
aty = 3 (17) 

P 

* 
Ma CT 1 

Z,mox = 27tQ, + 1j sty = - j (18) 

Expressions (7) and (8) show that if h* = 1 (i.e., if the 
two layers have equal depth), the mass flow rate is the 
same in the two layers ; i.e., I$r,minl = 1r&J, for all 
Ma. 

For finite cavities (A = 4) the computed values of 
the streamfunction for the fully-symmetric 2-D cases 
(h* = rc* = p* = A* = p* = 1 and Pr2 = 1) are given 
in Fig. 2, in the range 10 < Ma < 1000. As expected, 
the streamfunction in the upper layer is equal to that 
in the lower layer; in particular: l$l,tinl = l$z,_l. 
The 2-D results coincide with the 1-D (asymptotic) 
expressions (17) a:nd (18) only for very low Ma ; for 
higher Ma the 2-D results tend to a parabolic evol- 
ution, in contrast with the linear 1-D solution. Of 
course, this difference between 1-D and 2-D solutions 
which is more evident for high Ma, comes from the 
increasing role played by the non-linearity in the finite 
cavity (which is absent in the 1-D solution). 

The flow structure and isotherm patterns for the 2- 
D symmetrical model system are also shown in Fig. 2 
for Ma = 1000. Like the 1-D analytical prediction, 
the numerical flow and temperature fields (streamlines 
and isotherms) in the two layers are perfectly sym- 
metric with respect to the interface. In this case 
(Ma = 1000) the flow exhibits two juxtaposed, coun- 
ter-rotating, vortices in each layer, thus leading to a 
strong modification of temperature field relative to 
the motionless, conducting case (vertical isotherms). 

3.2. Liquids of different viscosities (pl # p2 ; 
p2 = const.) 

Three different encapsulant viscosities have been 
considered : p* = 0.1, 10 and 100. The results can be 
compared to the case n* = 1 in the range 
50 < Ma < 104. The computed streamlines and iso- 

therms in the two layers are given for p* = 0.1 and 
p* = 10 in Fig. 3(a-b), respectively. The case p* > 1 
(i.e., where encapsulant viscosity is greater than melt 
viscosity) fits better for crystal growth experiments as 
it corresponds to a reduced velocity in the melt. 

In Fig. 4 are given the variations of the maximum 
streamfunction (divided by Marangoni number) of 
the melt layer as a function of p* for different values 
of Ma (Ma = 50, 100, 500 and 1000). The solid line 
corresponds to analytical solution (18). It clearly 
appears that : (i) the convective flow intensity in both 
layers diminishes when increasing the viscosity of the 
upper layer, for all Ma; (ii) the effect of the lateral 
walls of the 2-D cavity are more evident for large 
values of Ma and for lower viscosity in the upper 
layer. 

The thermocapillary flow structure when p* = 0.1 
is shown in Fig. 3(a) for Ma = 1000. At variance with 
the case n* = 1 streamlines and isotherms in both 
layers are no longer symmetric with respect to the 
liquid-liquid interface. A typical ‘flywheel’ structure 
appears in the upper layer near the cold end-wall, and 
a longer and larger convective cell fills almost all the 
melt layer. Even with so different structures, the two 
major convective cells have about the same intensity 
(maximum streamfunction) both high. This situation 
has no experimental interest. The case n* >> 1 is the 
interesting one. For example, for p* = 100 and 
Ma = 104, the extreme values of the calculated stre- 
amfunction are : tj,,m,n = - 2.588 for the encapsulant, 
and tizSmax = 2.876 for the melt. In this case, the flow 
velocity is reduced and a parallel flow develops in 
most of the two layers (as in Fig. 3(b)). 

3.3. Liquids of different thermal diffusivities 
(rcl; lc2 = const.) 

Now, let us vary only the thermal diffusivity of 
liquid-l (encapsulant) while that of liquid-2 (melt) is 
maintained constant. For illustration we take rcz = 1 
and allow rc, to vary from 0.1 to 10. Flow patterns 
together with isotherms are shown for rc* = 0.1 and 
Ma = 500, and for K* = 10 and Ma = 1000, in Fig. 
5(a)-(b), respectively. Note that the flow fields in each 
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0 200 400 600 800 1000 

Ma 
Fig. 2. Variation of J1z,maJMa as a function of Ma in case A, for a symmetric system Pr, = Pr2 = 1, 
h* = p* = K* = p* = A* = 1 and A = 4; and streamlines (above) and isotherms (below) for Ma = 1000. 

(4 
Fig. 3. Streamlines (above) and isotherms (below) for asymmetric systems @, # pzrz) at 

Pr, = h* = K* = p* = A* = 1 and A = 4; and streamlines (a) for I”* = 0.1, (b) p* = 10, Ma = 1000. 

layer appear to be fully symmetric with respect to the the fact that the Marangoni effect, the only driving 
interface ; in particular we have the same mass flow force (along the interface) produces identical flow 
rate m each layer, i.e., $2,max = -tj,,min. This is due to effect in the two layers. Indeed the viscous effect are 
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0,005 

0,000 
0 L 4 6 8 10 

P* (11142) 

Fig. 4. Evolution of dr2,_,.JMu as a function of I* for different 
values of Ma, at Pr,, = h* = p* = p* = 1* = 1 and A = 4. 

(a) @I 

- 0 * 4 6 8 10 

1/** (K2IKl) 

Fig. 6. Evolution of &&Ma as a function of l/~* (Pr,/PrJ 
for different values of Ma, in the case of Fig. 5. 

Fig. 5. Streamlines (above) and isotherms (below) for asymmetric systems (q # KJ at 
Pr, = h” = p* = p* = I.* = 1 and A = 4; (a) for K* = 0.1, Ma = 500; (b) for K* = 10, Ma = 1000. 

the same in each layer (same viscosity, same 
geometry). However, the thermal fields are different 
in the two layers (see Fig. S(a)-(b)) ; isotherm patterns 
change much more strongly in the liquid layer whose 
thermal diffusivity is weaker. The flow intensity differs 
from that in case K* = 1. It depends on rc* as the 
thermocapillary forces are proportional to the tem- 
perature gradient along the interface, that couples the 
Navier-Stokes equations and the energy equation. 

Figure 6 shows the evolution of the maximum 
streamfunction in the melt as a function of the ther- 
mal diffusivity ratio (rc*) for different Marangoni 
numbers. Note that the asymptotic solution given by 

expression (18), which is also plotted in Fig. 6 (solid 
line), does not depend on the thermal diffusivity ratio 
rc*. For the 1-D solution (infinite aspect ratio) the 
longitudinal temperature gradient is constant (not 
coupled with the dynamics). But, as it can be seen in 
Fig. 5(a) for K* = 0.1, the 2-D numerical solutions 
show that the temperature distribution along the inter- 
face is strongly affected when the encapsulant has a 
lower diffusivity. The longitudinal temperature gradi- 
ent decreases at the centre and increases near the 
endwalls hence reducing convective flow in the system. 
For JC* = 10 (Fig. 5(b)), the situation is the opposite; 
for the same Ma the convective flow is stronger than 
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for rc* = 0.1, as the temperature gradient along the 
interface is more uniform. In fact, for small Ma the 
flow velocity tends to the 1-D solution. 

3.4. Concluding remarks 
Summing up, for the confined geometry (the cavity 

with a rigid top-wall) and for two liquid layers of 
equal depth (h* = l), we can safely say (see Figs. 4- 
6) that to reduce the mass flow rate in the melt layer 
there is interest in using an encapsulant liquid of 
higher viscosity than the melt (which yields viscous 
damping), and/or with lower thermal diffusivity than 
the melt (which reduces thermocapillary convection 
by lowering the temperature gradient along the inter- 
face, in the centre of the cavity). 

4. THE B,O,-GaAs SYSTEM 

In this section, we consider the case of molten GaAs 
encapsulated by B203. The physical properties of the 
fluids are listed in Table 2. We study two cases: (i) 
rigid top surface (case A) and (ii) an open, free top 
surface subject to the Marangoni thermocapillary 
force (case B). For case B, we also consider that sur- 
face-tension temperature coefficient at the top surface 
(- &, _Ja 7’) can be varied while the corresponding 
coefficient at the interface (-an,_ ,/aT) is fixed. 

4.1. The B#-GaAs in a cavity with no open surface 
(case A) 

The thermocapillary convection for a B,O,-GaAs 
system has been investigated for two aspect ratios 
(A = 2 and A = 4) and Marangoni numbers ranging 
from Ma = 750 to Ma = 6 x 104. The results con- 
cerning the mass flow rate $2,max in the melt and the 
maximum interfacial velocity are plotted in Fig. 7(a)- 
(b), respectively, in terms of Ma in the range 
7.50 < Ma < 15 000. In this range, the mass flow rates 
in the encapsulant layer I~l,minl and in the melt $2,max 
are nearly the same. This result is connected to the 
fact that the isotherms are only slightly deviated from 
the ones of the motionless, conducting regime. 
According to equation (1 S), it would be more relevant 
to express the mass flow rate in terms of the Mar- 
angoni number divided by p* = 1398. Then the results 
of Fig. 7 would be in the range 0 < Ma/p* < 11, and 
we see that this linear variation of r,kl,mar agrees well 
with the results plotted in Fig. 2 for p* = 1. 

Figure 8(a)-(b) give streamlines and isotherms in 
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ti 

Fig. 7. Variation of $+,, (a) ; and maximum absolute values 
of the velocity at the Interface, (b) ; as a function of Ma, in 

caseA;forA=2,andA=4,h*=l. 

a (A = 4) cavity for Ma = 1500 and Ma = 6 x 104, 
respectively. In all cases, two counter-rotating con- 
vective cells fill the whole cavity, one in each layer. The 
two cells have almost the same intensity (maximum 
stream-function) for low Marangoni numbers. The 
horizontal velocity profiles at x = OSA, in the two 
layers are symmetric with respect to the interface. This 
is in agreement with the theoretical velocity profiles 
obtained for infinite aspect ratio layers (A --r co) when 
h* = 1 ([ll]). The form of the convective cell in the 
encapsulant almost does not change and that in the 

Table 2. Physical properties of the B203 liquid and the GaAs liquid 

K Y 

Fluid W/s1 P&l k& ~1 b’/sl k&l Pr 

W3 2.52 x 10-6 2.0 3.9 2.37 x lo-’ 1648 9.0 x 1o-5 939.1 
GaAs 7.17 x 1o-6 17.8 2.79 x lo-’ 4.90 x 1o-7 5720 1.87 x 1O-4 0.068 

B,O,/GaAs 0.352 0.112 1398 4829 0.288 0.48 1 13 741 
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I 
G-4 

Fig. 8. Streamlines (above) and isotherms (below) for case A, for A = 4, h* = 1 at: (a) Mu = 1500 
(&_ = 3.9707 x 10-2, +,, = -3.9639 x 10e2) ; and (b) Mu = 6 x lo4 (I,&_ = 1.5265, &_ = - 1.3282). 

melt is significantly modified (with the cell centre mov- 
ing towards the cold sidewall). At the same time, the 
change of the temperature field in the encapsulant is 
stronger than in the melt, due to the very high Prandtl 
number of the l&O3 liquid. The form of the con- 
centrated convective cell (‘flywheel’ structure) occur- 
ring in the GaAs layer at Mu = 6 x lo’ is similar to 
the one numerically found by Ben Ha&d and Roux 
[19] for a single liquid layer with a low-~ram.j&num- 
ber (Pr = 0.0015). Moreover, in our **layer pym, 
one may ob-e that the tendency of the flow towards 
the ‘flywheer structure in the melt is reduced relative 
to the case of a single liquid layer, due to the damping 
efTe& induced by the highly viscous B203 fluid. Thus 
both the high Prandtl number, and the high viscosity 
of the encapsulant liquid drastically affect the ther- 
mocapillary flow. 

We have also investigated the influence of encap- 
sulant layer thickness upon the melt flow for A = 4 
and Ma = 3750, for fixed melt layer depth (h2 = 1) 
while the thickness of the encapsulant is varied from 
0.33 to 2. The evolution of ]ll/,,min] (]$,lmax) and $2,max 
are plotted in Fig. 9(a) in terms of the thickness ratio 
of the two layers. One observes that the convective 
flow, not only in the encapsulant but also in the melt, 
becomes less and less strong when h, decreases. This 
is consistent with expression (18) that shows that 

ti *,_ is proportional to h, for large p*. Note that two 
counter-rotating (cells still fill the whole cavity, but 
their intensity is no longer the same as soon as h* # 1, 
in accordance with expression (17) that shows that 
]$l,min] is propon:ional to h’, for large p*. This is 
shown in Fig. 9(b) where the dimensionless horizontal 
velocity profiles on the vertical mid-plane are plotted. 

0.05 

WJ 
0.2 0,4 0,6 0.8 1.0 1,z 1,4 1.4 1.8 2.0 

thickness ratio, h* 

(a) 

(b) 
Fig. 9. Case A; (a) evolution of I$&_ and ]$,lrnax, for differ- 
ent values of h* ; (b) horizontal velocity profiles on the ver- 
tical mid-plane; for (1) h* = 0.33 ; (2) h* = 0.5 ; (3) h* = 1; 
(4)h*=1.5:(5)h*=2.atA=4.Ma=3750andh,=l. , , 



1508 Q. S. LIU et al. 

Fig. 
case 
flow 

10. Variation of I)~ and~,uafimctionofa’in 
BforA=4,Ma=375Oandb*=I;&~ 
structures at t7* - -1,a*icl,a*_2Pnda*-~,i~~:; 

=P’ia@n fi cllscA (r- l$A,.x), (b). 

4.2. Tkr, B,O,-GaAs system with an open, free top 
ti&zce (case B) 

Now we consider the case of a B,O,&aAs system 
open to air, when the Marangoni thermocapillary 
force acting on the open surface of the encapsulant is 
expected to influence the convective flow in both layers 
(case B). The direction and magnitude of this second 
thermocapillary force can be different from that at 
the encapsulant-melt interface. The quantity Q* [see 
equation (14)] accounts for the ratio of the two surface 
tension parameters. 

Like case A, increasing (or decreasing) the encap- 
sulant thickness in case B greatly affects the flow inten- 
sity ia &e melt layer for every value of Q* . Numerical 
a~- M performed for u* = 2 by varying h* 
funn 0.33 to 2 in the case of B@aaAs system with 
A = 4, hs = 1 curd Ma = 3750. The computed results 
nported&Fig, 1 If&j) &ow that the convective flow 
in the melt layer is much weaker * L* = 0.33 than 
for h* = 1. Conversely, when P > I, the greater the 
upper layer thickens, the more the flow velocity 
increases in the melt layer. The same behaviour was 
observed in Fig. 9(b) for case A. The intensity of the 
intermediate cell (staying always near the interface in 
the encapsulant), becomes noticeably stronger when 
the thickness of the encapsulant increases. Then, the 
melt layer is not completely at rest, even for fr* = 2. 
This means that the damping effectiveness of the ther- 
mocapillary top surface on the melt motion depends 
not only upon a suitable choice of o* (physical con- 
dition), but also upon an appropriate choice of the 
thickness of the encapsulant (geometrical condition). 

Numerical simulations of this two-layer system Finally, we have paid special attention to the melt 
have been done for different Q* but for a fixed value flow structure for different aspect ratios (for 
of (-&,_,/ar). Some typical flow structures are 1 Q A < 12), also in case B for cr* = 2. For illus- 
given in Fig. 10(a) for - 1 < e* < 5 with A = 4, tration, we have taken: h* = 1 and Mu = 3750. To 
h* = 1 and Ma = 3750. The streamfunction fields and maintain the Marangoni number constant, the exter- 
horizontal velocity protiles in the vertical mid-plane nal temperature gradient is taken constant (i.e., AT is 
are plotted. The flow direction in each layer is changed varied proportionally to A). The velocity profiles at 
as a consequence of the coupling between the two the interface are plotted in Fig. 12 for several values 
thermocapillary forces. For e* > 3, there is one clock- of A (1, 2, f, 6, 8, 10 and 12). Four flow patterns, 
wise cell in the melt layer and one anti-clockwise in corresponding, respectively, to A = 1,2, 6 and 12, are 

the encapsulant. For a* < 0 we have the opposite 
structure. The flow direction is imposed by the ther- 
mocapillary force along the top surface. For inter- 
mediate values of cr*, the flow pattern is more com- 
plex ; the encapsulant layer is filled with two counter- 
rotating cells for Q* = 1. For e* z 2 the flow along 
the encapsulant-melt interface is reduced. In the latter 
case the thermocapillary effect along this interface is 
counter-balanced by the dynamical effect (viscous) 
induced by the anti-clockwise flow due to the ther- 
mocapillary effect along the top surface. Concur- 
rently, the flow in the melt is very weak in comparison 
with that found in case A (see Fig. IO(a) for e* = 2). 

A comparison of flow characteristics in the melt, 
for case A and for several values of cr* in case B, is 
given in Fig. 10(b), for A = 4 and Mu = 3750. We see 
that in the range 0.5 < cr* < 4 the mass flow rate in 
the melt (Il/z,maX) for case B is lower than the one for 
case A ; the optimum is obtained for e* z 2, where 
there is a reduction by a factor of 3. Two other numeri- 
cal computations of the same case have been per- 
formed for Mu = 1250 and Mu = 7500, respectively. 
We also found that it exists a range of values of g* 
where the mass flow reduction in the melt layer is 
more effective than in the case of a rigid top surface. 
The upper limit of g*, denoted of, slightly increases 
with Mu, but it is not less than 3.5 (which corresponds 
to the analytical result for an infinite aspect-ratio 
system, A + co). 
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(b) 
Fig. 11. Case B ; (a) evoluhon oft/!,,,,,, and Gl,- as a function 
of h* ; (b) horizontal velocity profiles on the vertical mid- 
plane; for (1) h* := 0.33; (2) h* = 0.5; (3) h* = 1; (4) 
h+=lS; (5) h+=2, at A=4, cr*=2, Ma=3750 and 

h,= 1. 

distmce, X 
Fig. 12. Evolution of velocity profiles at the interface as a 
function of A, for case B at u* = 2, Ma = 3750 and h* = 1, 
(a)A=I;@)A=2;(c)A=4;(d)A=6;(e)A=8;(f) 

.4=10;(g)A=12. 

given in Fig. 13 for u* = 2 (for A = 4 see Fig. 10(a)). 
For smaller aspect ratios (A < 4) an intermediate cell 
appears in the encapsulant and flow exists in the whole 

melt layer. For larger and larger A, the intermediate 
cell (near the two endwalls) is less and less observable 
and the melt flow is more and more effectively reduced 
in the central region of the cavity. For A > 8, the 
largest cell in the melt splits into two smaller counter- 
rotating vortices near the two lateral walls of the cav- 
ity where there still exists a high velocity gradient 
(along the interface) due to the relatively high inter- 
facial tension gradient. It is noticeable that the melt 
mass flow rate is almost independent of the cavity 
aspect ratio (IZ&~ z 3.03 x 1O-2+O.O3x 10e2; for 
1 Q A < 12). 

4.3. Znjluence of the viscosity of the encapsulant 
In the previous section we considered the system 

B,O,-GaAs with a highly viscous encapsulant 
@* = 1398). Here, we complement this study by 
numerically studying in further depth the influence of 
encapsulant viscosity in a wide range of values of p* 
while keeping Z+ constant. For A = 4, c* = 2, h* = 1 
and Ma = 250, the computed values of $,, are plot- 
ted in Fig. 14. When decreasing p* by a factor 1000, 
thermocapillary convection becomes stronger in both 
encapsulant and melt layers, and the damping of the 
melt motion becomes weaker. For p* = 1398, the 
mass flow rate in the melt (&ma is about an order of 
magnitude smaller than in the encapsulant ($,,max). 
This difference is reduced to a factor two only for 
P * = 1.398. In fact, I,&,,,~ for /r* = 1.398 increases 
about three orders of magnitude relative to the case 
/1 * = 1398. The curve plotted in Fig. 14 shows that 
the mass flow rate in the melt (@z,msx) is inversely 
proportional to p*. Note that this behaviour is the 
same as in the rigid top-boundary (case A), as dis- 
cussed in Section 3.2 (where expression (8) applies). 
In addition, these results show that even for the special 
situation when (r* = 2 (i.e., when thermocapillary 
forces at the encapsulant-melt surface and at the open, 
free top surface are in balance). Thus a highly viscous 
encapsulant’helps to strongly reduce motion in the 
melt. 

The effect of a highly viscous encapsulant can also 
be seen by comparing the flow structures at p* = 1.398 
and at p* = 1398 (see Fig. 14). For p* = 1.398, the 
intermediate convection cell in the upper layer near 
the liquid-liquid interface appears quite nearly and its 
intensity becomes much greater than at p* = 1398, 
even for the special case of CJ* = 2. 

5. SUMMARY AND CONCLUSION 

A numerical investigation of pure thermocapillary 
convection (g = 0) has been carried out for two 
immiscible liquid layers in a rectangular cavity subject 
to a temperature gradient parallel to the liquid-liquid 
interface. In the simpler case of rigid top boundary, a 
true cavity, the influence of viscosity ratio and of 
diffusivity ratio of the two layers has been investigated 
for various fluids. We even considered the unrealistic 
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(a) 

Fig. 13. Steady flow structures in case B for different aspect ratios of the lower layer, at u* = 2, Mu = 3750 
andh*=l,(a)A=l;(b)A=2;(c)A=6;(d)A=12;forA=4seeinFig,lO(a).(u*=2.) 

- - -_“--  

1 10 loo Iwo IoiKKl 
P* 

Fig. 14. Variation of +i,mai and (absolute) horizontal velocity 
at x = A/2 on the interface as a function of p*, and two 
typical flow structures at p* = 1398 and p* = 1.398, for case 
Bat A = 4, u* = 2, Ma = 3750, h* = 1 and p2 = 2.79 x lo-‘. 

case of a ‘symmetric’ system (with equal diffusivity 
and viscosity in each layer; but with a temperature 
dependence of surface tension). In such a case, the 
flow structure and temperature fields are found to be 
perfectly symmetric with respect to the interface. For 
asymmetric systems with different thermal diffusivities 
(K~ # ICJ but equal viscosity, the flow is symmetric 
while the temperature field is not, as expected. For 
asymmetric systems with different viscosities 

(p, # pL2), both velocity field and temperature field are 
asymmetric. Increasing viscosity or reducing diffu- 
sivity in the encapsulant layer helps reduce the con- 
vection intensity in the melt with higher efficiency in 
the former than in the latter case. 

The experimentally relevant case of a B,O,--GaAs 
system was studied for two top surface conditions: 
either rigid or free but subject to thermocapillary 
forces. A comparison has been performed between 
these two cases. For case B there exists a range of C* 
in which the flow in the melt is less than that for a 
rigid top surface (case A). The melt flow damping is 
almost maximum for c* = 2 where it reaches a factor 
of 3, for an aspect ratio A = 4. The damping for 
cr* = 2 is still efficient for a large range of aspect ratios 
(1 f A < 12). Despite this clear advantage of case B, 
case A is probably simpler to implement for tech- 
nological applications. 

Thermocapillary convection in the melt layer is 
highly influenced by the thickness of the encapsulant 
layer in both cases (A and B). A thinner encapsulant 
layer is more efficient to reduce the melt motion. How- 
ever, technological limitation to this reduction is the 
possible rupture of the encapsulant film, particularly 
catastrophic in case B. 

As a general conclusion we can safely say that the 
mass flow rate in the melt is inversely proportional to 
the encapsulant viscosity whatever the geometry used, 
a cavity or a two-layer system open to air (cases A 
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and B). The use of a highly viscous encapsulant 
appears best to significantly reduce the intensity of 
thermocapillary convection in the melt. Finally, the 

9 
’ 

relationship (18) can be very useful as a guide for 
practical purposes. 
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